Wake Forest Clinical and Translational Science Institute (CTSI)
Request for Applications for Translational Research Pilot Awards

Purpose
The purpose of this RFA is to support high impact pilot projects that help catalyze translation of discoveries to treatments or the delivery of care. The ultimate aim of this program is to make research investments that maximize healthcare value and improve population health. The immediate aim is to allow investigators to develop, test, or disseminate novel approaches to a translational research question and obtain preliminary data in support of larger follow-up investigations. Examples of pilot studies include feasibility studies, secondary analysis of existing data, development of new research methodology and/or new tools, dissemination of effective tools, methods, processes, or early development of new therapy/technology and can include investigation of patient or health care provider behaviors. A preferred, but not required characteristic is that such research not only addresses a translational research question, but also provide insights that could be generalized to other projects. Generalizable solutions are ones that can be applied to other patient populations or disease mechanisms (e.g. how the technique can be used in other disease states; how the process can be used in a different patient population).

Successful proposals will clearly state:
- How the proposed project advances research in a particular field to address health care needs within the population
- A rationale and potential for generalizability (if applicable)
- How the proposed project is translational (e.g., identify translational roadblocks that the proposed project will address and the anticipated benefits of overcoming them)
- A feasible project plan for the one-year award period
- Address next steps for this project: Will it lead to larger, subsequent grant applications (be specific: indicate RFA you will submit to and when)? Can it be applied to improve health or how we deliver care? How will results be disseminated? Is the project scalable? Consider the full range of possibilities for how the Medical Center and/or our community will benefit.

No pilot data is necessary to apply for this RFA, however supporting data from the recent literature is appropriate if available.

Pilot Award Categories
This RFA is open to research project proposals in one of the following categories:
- **Basic Research:**
 Basic research involves scientific exploration that can reveal fundamental mechanisms of biology, disease or behavior. Every stage of the translational research spectrum builds upon and informs basic research.
- **Preclinical Research:**
 Preclinical research connects the basic science of disease with human medicine. During this stage, scientists develop model interventions to further understand the basis of a disease or disorder and find ways to treat it. Testing is carried out using cell or animal models of disease; samples of human or animal tissues; or computer-assisted simulations of drug, device or diagnostic interactions within living systems.
- **Clinical Research:**
 Clinical research includes studies to better understand a disease in humans and relate this knowledge to findings in cell or animal models; testing and refinement of new technologies in people; testing of interventions for safety and effectiveness in those with or without disease; behavioral and observational studies; and outcomes and health services research. The goal of many clinical trials is to obtain data to support regulatory approval for an intervention.
- **Clinical Implementation:**
 The clinical implementation stage of translation involves the adoption of interventions that have been demonstrated to be useful in a research environment into routine clinical care for the general population. This stage also includes implementation research to evaluate the results of clinical trials and to identify new clinical questions and gaps in care.
- **Public Health:**
 In this stage of translation, researchers study health outcomes at the population level to determine the effects of diseases and efforts to prevent, diagnose and treat them. Findings help guide scientists working to assess the effects of current interventions and to develop new ones.
Clinical/Population Health Science Projects are not limited to, but can focus on the following areas: the Academic Learning Health System (Appendix I), Community-Engaged Research (Appendix II), Health Disparities (Appendix III), Biomedical Informatics (Appendix IV), Implementation Science (Appendix V) and are strongly encouraged.

The WF CTSI is continuing to address disparities by deconstructing structural inequities in clinical and translational research. Over time, we seek to fund health equity and community-oriented research at parity with biomedical research. Projects that identify a clear impact on improving health equity will be considered as maximally responsive to the solicitation, assuming that other criteria are met. While projects are not required to focus on health equity, applicants are encouraged to document the potential impact of their project on equity.

Eligibility
These awards are open to investigators with faculty rank across the Southeast region of Advocate Health. This includes Atrium Health, Atrium Health Navicent, and Atrium Health Wake Forest Baptist, including Wake Forest University School of Medicine. Wake Forest University (Reynolda Campus) faculty and all CTSI affiliated institutions with a Wake Forest co-investigator are also invited to apply.

The CTSI will allow a Co-PI structure if both PIs have expertise relevant to the project with distinct contributions to its design and implementation. Non-Faculty Researchers (allied health disciplines) may serve as a Co-PI with a traditional faculty researcher.

For projects that are focused on Community-Engaged Research and intend to have a community representative serve as a Co-PI, the community-representative must work for a non-profit community organization or local government agency that serves the community within the Southeast Region of Advocate Health.

Additional Information:
- Projects previously submitted as CTSI or other intramural Pilot Proposals are eligible for resubmission but must incorporate reviewer feedback.
- Only one proposal may be submitted per faculty member serving as PI or co-PI.
- CTSI KL2/K12 scholars whose funding is active during the pilot project period are not eligible to apply.
- Projects that have been previously funded (or projects with very similar ideas) will not be considered.
- Investigators are limited to two funded CTSI pilots unless special permission is granted in advance of the Letter of Intent submission deadline. Please email Brittney Patterson at britjack@wakehealth.edu to request permission.
- Investigators with active Ignition Funds remain eligible.

Funding
Successful pilots will receive up to $40,000 in direct costs. All projects must meet the above specifications outlined under “Purpose.” Project final budgets will be based on a complete review of the budget and budget justification. See “Budget Guidelines” below for more details. All funds are to be spent within a one-year project period; no-cost extensions will not be approved.

Please note that the Center for Biomedical Informatics (WFBMI) is offering a $10,000 bonus for one of the pilot awards if the proposed project involves informatics faculty and staff, techniques, and methods. This bonus will be awarded to one pilot proposal evaluated as meritorious by CTSI Administrators and the IRSC. After an additional review by the WFBMI leadership, the resulting pilot award will be in the amount of up to $50,000. It is required that the awardees (all key study personnel) need to be members of WFBMI to receive the informatics bonus. Please indicate in your application if you want to be considered for this bonus award.

The Perioperative Outcomes and Informatics Collaborative (POIC) is offering a $5,000 bonus for one pilot award if the proposed project investigates perioperative outcomes and/or informatics. After an additional review by the POIC leadership, the resulting pilot award will be in the amount of up to $45,000. Preference will be given to projects that include a multi-disciplinary team of clinicians and non-clinician scientists across the Southeast Region of Advocate Health. Please indicate in your application if you want to be considered for this bonus award.
Key Dates

<table>
<thead>
<tr>
<th>Date</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/13/23, 11:59 pm</td>
<td>Letter of Intent (LOI) Deadline</td>
</tr>
<tr>
<td>11/14/23</td>
<td>Investigators Invited for Full Application</td>
</tr>
<tr>
<td>12/13/23, 11:59 pm</td>
<td>Full Application Deadline</td>
</tr>
<tr>
<td>03/06/24</td>
<td>Selection of Awardees</td>
</tr>
<tr>
<td>05/09/24</td>
<td>If applicable, completed materials sent to NCATS for approval (Appendix V)</td>
</tr>
<tr>
<td>07/01/24</td>
<td>Project Start Date</td>
</tr>
<tr>
<td>06/30/25</td>
<td>Project End Date</td>
</tr>
</tbody>
</table>

CTSI Resources Available to Support Investigators

Several resources are available in the CTSI to help submit a strong application; while they are not required as part of the submission, investigators are highly encouraged to seek out additional assistance. All services can be requested through the CTSI Service Request form.

- **Grant Proposal Editing**: have an expert medical editor review your proposal prior to submission. They will offer suggestions on how to refine your writing and thinking. Your proposal will be edited in “track changes” so that you can easily accept or reject edits (free to everyone).
- **Biostatistical Support**: meet with a statistician to develop your study design, measurement, and statistical analysis plans prior to submission (free to everyone).
- **Research Studio**: meet with a multi-disciplinary panel of experts to work through specific aims, hypotheses, or ways to address the generalizable requirement (free to everyone).
- **CTSI Faculty Consultation**: meet with a CTSI faculty member (clinician, basic scientist, or behavioral scientist) to talk through project ideas or to find research/clinical partners (free to everyone).
- **Informatics**: optimization of the EMR to extract data for research purposes (free or fee-for-service, depending on need).
- **Community & Stakeholder Engagement Consultation**: meet with the Community and Stakeholder Engagement team to discuss recruiting special populations and working with community partners (free to everyone).

Application Procedure

1. **Letter of Intent Deadline: 10/13/23, 11:59 pm**
 Letters of Intent (LOI) (2 pages max) require the following:
 - A brief abstract, including specific aims.
 - A clear statement of how the project will overcome translational barriers that impede advancement of research translation, and a statement of what makes the project generalizable to other populations or disease mechanisms. Study methods and feasibility of projects should also be included.
 - A list of study team members for the proposed project. All team members should have agreed.

 The LOI should be submitted through the ePilot electronic submission system by the deadline noted above.

2. **Full Application Deadline: 12/13/23, 11:59 pm**
 Investigators invited to apply will receive an e-mail by 11/14/23 with a link to submit a full by **12/13/23**. Applications received after 12/13/23 will not be reviewed. Application instructions are included in the ePilot system and summarized below.
Applications that do not comply with these guidelines will not be considered for review.

Format Specifications
- Arial font and no smaller than 11 point
- Margins at least 0.5 inches (sides, top and bottom)
- Single-spaced lines
- All uploaded documents should be in PDF format

Submission/Applicant Information
- Project Title
- Submitting Principal Investigator, Co-Investigator(s), and other Key Personnel information

Abstract (300 words max)

Research Strategy (6 pages max, all items below are required components)
- Specific Aims (1 page max)
- Research Plan:
 - Significance
 - Innovation
 - Approach
 - Study Team
- Study milestones and anticipated outcomes (e.g. publication, presentation, grant submission, patent) with timeline (see Appendix VI for examples)

References (no page limit)

Statement on Health Equity Impact (300 words max; Optional)

Information Regarding Human Subjects
Address the following if the project involves human subjects.
- IRB Approval Status (please note: IRB approval is not required for full application submission)
- Clinical Trial Classification Questions
 - If your project requires an IND/IDE submission or exemption, please use the CTSI Service Request form to schedule a consultation for support and to discuss timelines. The timelines can impact your full project timeline and should be considered in the project plans.
- Protection of Human Subjects
 - Needs to clearly describe risk, protections, benefits, and importance of the knowledge to be gained by the revised or new activities as discussed in Part II of NIH competing application instructions
- Inclusion of Individuals Across the Lifespan
- Inclusion Plans for Women, Minorities, and Children, if applicable
- Recruitment and Retention Plan
- Targeted Enrollment Table (using NIH Targeted Enrollment Table)
- Data and Safety Monitoring Plan (DSMP) and Board (DSMB), if applicable
 - If you are unsure how much safety monitoring your study will need, please contact the IRB/HRPP Director, Briam Moore, at jbmoore@wakehealth.edu.

Information Regarding Live Vertebrates
Address the following if the project involves live vertebrates.
- IACUC Approval Status (please note: IACUC approval is not required for full application submission)
• IACUC approval will be required (as ‘just in time’ information) for implementation of projects with live vertebrate animals

Budget and Justification (budget template plus 1 page justification)

• Complete the [budget template form](#) and a brief justification for the funds requested. Please explain how other resources may be leveraged to support the project. If the proposed research will be done on more than one campus/institution, please include details in the justification.

• If salaried effort is not included in the budget for key study personnel, please explain.

• Sub-awards to other institutions are permissible, provided that most of the pilot project’s activities and dollars spent occur within WF or one of its affiliates.

• Funded projects receive certain [CTSI Services](#) free of charge. If the proposed project plans to use these services, they should be included in the budget at $0 and in the budget justification.

NIH-style biographical sketch for all Key Personnel

Review Criteria and Process for Full Proposals

1. An Administrative Review will be completed to verify all required components were submitted and formatting guidelines followed. **Applications that do not comply with guidelines will be automatically disqualified and will not be considered for review.**

2. Proposals that pass the Administrative Review are peer-reviewed by the WF Intramural Research Support Committee (IRSC) using NIH review criteria and scoring. Budgets will be reviewed by both CTSI Administrators and IRSC for appropriateness. **There will be separate review discussions for clinical science and basic science proposals.**

3. Final award approval will be at the recommendation of CTSI Leadership.

Reviewers will score applications from 1 to 9 based on:

1. Significance of the problem to be addressed
2. Innovation of the proposed solutions
3. Strength and breadth (interdisciplinary nature) of the investigative team
4. Methodological rigor, feasibility, and generalizability
5. Clear project milestones and reporting plan
6. Potential of scalability and potential to affect quality and efficiency of care
7. Inclusivity of the study team participants
8. Impact of the work on health equity
9. The likelihood that the investment will lead to external funding, publication, or a licensable innovation; early-career faculty involvement, race/gender inclusiveness of the research team; and inclusion of women, minorities, older adults, and children as potential study participants.

Budget Guidelines

The project is one year beginning 07/01/24 and ending 06/30/25. Up to $40,000 in direct costs may be requested.

Grant funds may be budgeted for:

• Salary support for the PI or faculty collaborators (using NIH salary cap)
• Research support personnel (including undergraduate and graduate students)
• Travel, if necessary to perform the research
• Small equipment, research supplies, and core lab costs
• Other purposes deemed necessary for the successful execution of the proposed project

Grant funds may not be budgeted for:

• Office supplies or communication costs, including printing
• Meals or travel, including to conferences, except as required to collect data
• Professional education or training
• Computers or audiovisual equipment, unless fully justified as a need for the research
• Capital equipment
• Manuscript preparation and submission
General materials that are utilized across multiple projects or for broader-use
Indirect costs

Awarded funds must be used to conduct the work proposed. The CTSI reserves the right to revoke funding if it is determined that funds were not spent in accordance with the approved protocol. The general criteria for determining allowable direct costs on federally sponsored projects are set forth in 2 CFR Part 200: Uniform Administrative Requirements, Cost Principles, and Audit Requirements for Federal Awards (The Uniform Guidance).

Program Expectations
Prior to funding, awardees will be assigned to a Research Navigator to: 1) assist with study initiation; 2) convene an initial meeting with the project PI, CTSI administrative personnel, and a senior CTSI leader to discuss the project and how CTSI resources can be leveraged for the pilot grant; and 3) monitor progress throughout the life of the study. If any significant issues arise, the study team will be required to work with the CTSI to determine solutions so that the study can be successfully completed (or in rare cases, terminated).

Specific Deliverables
• Participation in the study initiation meeting
• A formal progress report at 6 months
• Upon completion of the project:
 o Close-out report, with plans for implementing and disseminating innovations
• Presentation of findings at requested events (i.e. CTSI Seminar Series, Service Line Meeting, CTSI’s annual External Advisory Committee meeting)
• Manuscript submitted within one year of the end of the pilot award
• Disclosure of 1) how results will be implemented and/or disseminated; 2) applications for extramural funding beyond the pilot grant; 3) what subsequent notification of funds occurred; and 4) related publications or significant collaborations resulted from the project, for a minimum of 4 years after completion of the award.

Other Guidelines
1. Prior to receiving funds, research involving human subjects must have appropriate approval from the IRB. Either an IRB approval letter or an IRB response to a “Determination Whether Research or Similar Activities Require IRB Approval” must be submitted to the CTSI prior to funds being released. Human subjects must be reviewed in accordance with the institution’s general assurances and HIPAA. All key personnel must have certification of training in the protection of human subjects prior to the start of the grant period.
2. Prior to receiving funds, research involving live vertebrates must have appropriate approvals from IACUC. Either an IACUC approval letter or documentation on why activity does not require IACUC approval must be submitted to the CTSI prior to funds being released.
3. CTSI staff will work closely with funded teams throughout the grant period to monitor progress and, when necessary, provide assistance. A six-month interim progress report and a final progress report will be required. We expect PIs to report over the lifetime of the work the outcomes achieved due to the pilot award, e.g., subsequent external funding, publications, presentations, and patents.
4. Any awardee who leaves his or her position should contact the CTSI to discuss plans for the project.

Grant Administration
The Principal Investigator is responsible for the administration of grant funds.

Contacts
Questions about your research project or the ePilot electronic submission system should be directed to Brittney Patterson at britjack@wakehealth.edu. *New* FAQs page for more tips and information.
Appendix I: Academic Learning Health System

Quality, safety, and outcomes could be markedly improved if demonstrated best practices were universally adopted. However, the traditional healthcare system does not promote a culture of institutional learning to improve practices, apply research principles, evaluate change, or share best practices between systems to rapidly and widely disseminate innovations. Advocate Health are growing as an academic Learning Health System. Expanding from the standard definition of a Learning Healthcare System, we define an Academic Learning Health System (aLHS) as a particular Learning Health System built around a robust academic community with a central academic mission, with six differentiating features (see full definition below). Aligned with the national CTSA program emphasis on implementation, a further recent commentary has highlighted the potential role of dissemination and implementation science in addressing challenges in operationalizing LHS.

The academic Learning Health System Pilot Award is designed to incentivize and support a broad range of research (exploratory studies, QI projects, evaluations of interventions, evaluations of barriers to implementing interventions) that either answer questions about how to create an academic Learning Health System, or where and how research is an intentional element in the growth to an academic Learning Health System. Thus, the purpose of this RFA is to stimulate innovative research ideas that can transform the way we deliver care.

Definitions:

A Learning Healthcare System is defined, by the Institute of Medicine, as a system in which, "science, informatics, incentives and culture are aligned for continuous improvement and innovation, with best practices seamlessly embedded in the delivery process, patients and families active participants in all elements, and new knowledge captured as an integral by-product of the delivery experience." Five key components of LHS include Organizational Learning (innovation and quality improvement), Translating Research into Practice, Engagement with Key Stakeholders (e.g.: leaders, clinical teams, clinicians, patients, community and state organizations), and Building New Knowledge.

An Academic Learning Health System (aLHS) as a particular Learning Health System built around a robust academic community with a central academic mission. An aLHS capitalizes on embedded academic expertise in health system sciences; 2. engages the full spectrum of translational investigation from mechanistic basic sciences to population health; 3. builds pipelines of experts in Learning Health Systems Sciences and clinicians with fluency in practicing in learning health systems; 4. applies core LHS principles to the development of curricula and clinical rotations for medical students, house staff, and other learners; 5. disseminates knowledge more broadly to advance the evidence for clinical practice and health systems science methods; 6. addresses social determinants of health and creates community partnerships to mitigate disparities and improve health equity.

Translational science, as defined by the NIH, "represents each stage of research along the path from the biological basis of health and disease to interventions that improve the health of individuals and the public. Translation is the process of turning observations in the laboratory, clinic and community into interventions that improve the health of individuals and the public — from diagnostics and therapeutics to medical procedures and behavioral changes. Translational Science is the field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process."

Projects that address the academic Learning Health System topic and are both generalizable and translational are encouraged. These include, but are not limited to projects that:

- **Move QI / system change projects into publishable and generalizable research.** Examples: Test whether process changes that worked at WF also work at other hospitals; implement a tested quality improvement method at WF; increase the reliability of quality improvement initiatives by incorporating prospective non-randomized controlled trial designs or quasi-experiments (enhanced observational study designs), using staggered implementation, risk adjustment, or case matching approaches.

- **Import practices from other healthcare systems.** The challenges we face as a healthcare system are certainly not unique. We should learn from others who have managed the same challenges. Example: Import features of other healthcare systems -national or international- and adapt them for use in our system.

- **Test ways to engage clinicians in research.** Bringing together clinicians (who can identify healthcare delivery problems) and researchers (who can develop and test research questions) can lead to an
evidence-based pipeline that moves clinicians’ ideas into research and then back into clinical practice. Examples: Embed a researcher into a service line to find healthcare delivery problems we need to address with research. Invite clinicians to bring the top two clinical issues they have observed to a meeting with researchers (“Which process issues you have observed? What do you notice every time you deliver care to a certain group of people? Which questions would you test if only you could pull the data from the EMR?”). Test strategies to bring clinicians into clinical trials or other ongoing studies. The success of the clinician-researcher interactions might be measured via process measures such as the number of ideas generated, or whether a clinical issue is turned into a research question that is explored further (e.g., results in a ticket to WakeOne for a data pull).

- **Engage patients and other healthcare stakeholders to influence research and improve care.** Example: Engaging non-traditional research partners and incorporating perspectives beyond those of the research team – from topic selection to outcome selection and study design to conduct and dissemination of the results – can improve the utility of research for patients and providers. For example, one approach could involve capturing ideas from patients (or parents of patients) treated within our healthcare system, asking them about their concerns, and then rank ordering them (using the Delphi method). Items could be ranked as most pressing or most testable (e.g., medication list is not current on the patient printout; test results are shared with the patient through myWakeHealth before the clinician interprets them).

- **Test ways to change culture / form identity so that all faculty and staff understand that they are part of a Learning Healthcare System.** Example: Strategies could focus on education about research or evidence-based practice, institutional campaigns, or group discussions. For example, one approach might be to ask staff at department meetings to list how they are contributing to a LHS and to conduct a pre/post-test of clinicians and staff identifying as researchers after the intervention. Test strategies to develop and maintain a continuous learning culture, or strategies to align healthcare delivery incentives to support the Learning Healthcare System goals.

Examples of projects that focus on aLHS will meet some or all of the below criteria:

- Project addresses a “real” problem facing the Advocate Health system.
- The project involves the development of practices, treatments, tools or approaches that will improve care.
- If the project involves an intervention, the intervention is informed by published research (i.e., based on pre-existing evidence).
- Inclusion of both a skilled researcher and clinician with expertise relevant to the project contributes to designing and implementing the approach used for learning and for testing the intervention.
- Results from the research are delivered in a timely/expedited fashion.
- The analysis of clinical data is a central aspect of the project.
- Results from the learning process are disseminated throughout the organization in a manner that leads to better patient care and improved organizational practices and policies.
- The project has demonstrated support from a clinical unit, service, and/or leadership, and the clinical unit, service, and/or leadership has participated in the conceptualization of the pilot.
- The project products could be more widely adopted by Advocate Health if the strategy being implemented was found to be effective.
- The project will test strategies designed to translate research into practice (specifically to implement into practice guidelines, processes, delivery models, new tools and other innovations that are supported by the prior literature and/or national organizations).
- The project will result in pilot data that can be leveraged to apply for a larger grant from an external funding entity (NIH, NSF, PCORI, non-governmental, etc).
- The project holds the potential for intellectual property development through Wake Forest Innovations.
- The project involves inter-professional collaboration.
Appendix II: Community-Engaged Research
The primary focus of Community-Engaged Research is the development of community-engaged research, community-based participatory research (CBPR), or citizen science projects. Definitions of community-engaged research, CBPR, and citizen science, as well as useful references can be found below.

Community Engagement
According to the CDC, community engagement is the process of working collaboratively with groups of people who are affiliated by geographic proximity, special interests, or similar situations with respect to issues affecting their well-being. In practice, community engagement is a blend of science and art. For further detail, see: https://www.atsdr.cdc.gov/communityengagement/

Community Engaged Research (CEnR)
Since the 2006 inception of the Clinical Translational Science Awards (CTSA), the NIH has adopted the terminology of community engaged research (CEnR), and facilitated CEnR for reducing health inequities, increasing minority enrollment in research, diversifying the health workforce, augmenting implementation science, and enhancing external validity of research findings. CEnR includes several common critical elements such as:

▪ Collaboration with groups of people affiliated by geographic proximity, special interest, health condition, or other categories of shared identity,
▪ Groups of community members, organizational representatives, and academic researchers adhering to common principles and norms to nurture trust and promote authentic partnership,
▪ Focus on identifying and addressing the needs and priorities and harnessing the assets that affect health and well-being; and
▪ Research as an approach to systematically uncover and understand health-related phenomena and improve community and population health.

For further detail see: https://www.annualreviews.org/doi/10.1146/annurev-publhealth-040119-094220#

Community-Based Participatory Research (CBPR)
Community-based participatory research is: An applied collaborative approach that enables community residents to more actively participate in the full spectrum of research (from conception – design – conduct – analysis – interpretation – conclusions – communication of results) with a goal of influencing change in community health, systems, programs or policies. Community members and researchers partner to combine knowledge and action for social change to improve community health and often reduce health disparities. Academic/research and community partners join to develop models and approaches to building communication, trust and capacity, with the final goal of increasing community participation in the research process. It is an orientation to research, which equitably involves all partners in the research process and recognizes the unique strengths that each brings. For further detail, see: https://www.atsdr.cdc.gov/communityengagement/pdf/PCE_Report_508_FINAL.pdf

Other useful references for CBPR and CEnR
Citizen Science
Citizen science is scientific work undertaken by members of the general public, often in collaboration with or under the direction of professional scientists and scientific institutions, and citizen scientists, in the modern sense, are defined as a scientist whose work is characterized by a sense of responsibility to serve the best interests of the wider community or a member of the general public who engages in scientific work, often in collaboration with or under the direction of professional scientists and scientific institutions. For further detail, see: https://scistarter.org/citizen-science and https://www.citizenscience.gov/

Examples of projects that focus on Community-Engaged Research will meet some or all of the below criteria:

- Address health equity within underserved communities and/or communities of color, broadly defined, done in partnership with and in the community.
- Be responsive to community partners’ needs and priorities.
- Delineate how community-engaged research (CEnR), community-based participatory research (CBPR), and/or citizen science best practices will be applied.
- Describe engagement and roles of community partners within the research process.
- To be considered community-engaged research the project must include the perspectives of stakeholders outside the research team, preferably with an identified community partner.
- Proposals that are community-oriented but lack scientific rigor will not be funded.
Appendix III: Health Disparities

Although scientific and technological discoveries have improved the health of the US population overall, some population subgroups continue to experience a disproportionate burden of disease. A Health Disparities project will focus on one or more health disparity populations, which include Blacks/African Americans, Hispanics/Latinos, American Indians/Alaska Natives, socioeconomically disadvantaged populations, and rural populations. This focus can be on health disparity populations as a whole, a single health disparity population, or a specific subgroup within a health disparity population.

Projects that merely focus on diseases or conditions that happen to be more prevalent or associated with greater morbidity/mortality in one or more health disparity populations, without the proposed work itself being directly focused on improving health disparities (i.e., specific risk/protective factors, disease progression, treatment response, or health outcomes for a particular health condition in one or more health disparity populations) are not a priority.

Successful proposals will focus on racial/ethnic minority populations, socioeconomically disadvantaged populations, and/or rural populations and explain how the proposed project advances Health Disparities research or our delivery of care to underserved populations.

Examples of projects that focus on Health Disparities will meet some or all of the below criteria:

- Project must focus on racial/ethnic minority populations, socioeconomically disadvantaged populations, and/or rural populations.
- Project must go beyond describing existing health inequities to addressing health inequities.
- To be considered community-oriented research the project must include the perspectives of stakeholders outside the research team.
- Community-engaged research and CBPR is encouraged.
- Project should include how the proposed work directly focuses on improving health disparities.
Appendix IV: Biomedical Informatics

The primary focus of a Biomedical Informatics project is to address gaps in knowledge or other barriers to translational research problems by leveraging one or more Informatics tools and methods.

A project focused on biomedical informatics is intended to evaluate strategies in one of the following areas:

1. Creation, evaluation, and implementation of Clinical Decision Support Systems;
2. Improving and evaluating electronic information capture and data flow of both clinical and patient derived data;
3. Development of improved analytical methods for clinically derived data;
4. Creation of informatics tools to improve population health management;
5. Creation, evaluation, or implementation of Biomedical Informatics tools and algorithms.

The project must be translational in nature and should help to close the gaps in establishing a true Learning Healthcare System.

Successful proposals will create, evaluate, or implement Biomedical Informatics tools and algorithms while providing a rationale for local relevance and potential for generalizability, explaining how the proposed project advances research in Biomedical Informatics, and identifying translational roadblocks that the proposed project will address and the anticipated benefits of overcoming them with the informatics.
Appendix V: Implementation Science

The primary focus of an Implementation Science award is support the development of methods to promote the dissemination, adoption, integration, and/or effectiveness of promising practices, strategies, and/or technologies in clinical and/or community settings. Implementation scientists are committed to closing the gap between “what we know” as scientists and “what we do” as practitioners. A pilot focusing on implementation science is intended to elicit proposals that evaluate different strategies for closing the research-to-practice chasm through the development and testing of tailored implementation frameworks, identification of organizational and community levers to facilitate translation, determination of the feasibility of new implementation models, identification of strategies for scale-up, and/or development of strategies to disseminate knowledge or practices to a broad audience.

Successful proposals should test a practice, strategy, or technology that can be used to foster the translation of “what we know” to “what we do”.

Appendix VI: Study Milestone Examples

Below are examples of study milestones, outcomes, and timelines. However, these formats are not required.

Example 1:

- **Milestone 1 (0-1.5 months):** Milestone 1 Details **Outcome:** Outcome 1 Details
- **Milestone 2 (1.5-4 months):** Milestone 2 Details **Outcome:** Outcome 2 Details
- **Milestone 3 (4-6 months):** Milestone 3 Details **Outcome:** Outcome 3 Details
- **Milestone 4 (6-12 months):** Milestone 4 Details **Outcome:** Outcome 4 Details
- **Milestone 5 (8-12 months):** Milestone 5 Details **Outcome:** Outcome 5 Details

Example 2:

<table>
<thead>
<tr>
<th>Timeline and Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 1</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 2</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 3</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 4</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 5</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 6</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 7</td>
</tr>
<tr>
<td>Activity/Aim/Milestone 8</td>
</tr>
</tbody>
</table>

Example 3:

<table>
<thead>
<tr>
<th>Aim</th>
<th>Milestone</th>
<th>Month 1-3</th>
<th>Month 4-6</th>
<th>Month 7-9</th>
<th>Month 10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Milestone 1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aim 1 Anticipated Outcomes: Detail

<table>
<thead>
<tr>
<th>Aim</th>
<th>Milestone</th>
<th>Month 1-3</th>
<th>Month 4-6</th>
<th>Month 7-9</th>
<th>Month 10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Milestone 1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone 3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Aim 2 Anticipated Outcomes: Detail

<table>
<thead>
<tr>
<th>Aim</th>
<th>Milestone</th>
<th>Month 1-3</th>
<th>Month 4-6</th>
<th>Month 7-9</th>
<th>Month 10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Milestone 1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone 2</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Aim 3 Anticipated Outcomes: Detail
References
1. What is the difference between Translational Science and Translational Research?
 a. Translational Science (TS) is the field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Translational Research (TR) is the endeavor to traverse a particular step of the translational process for a particular target or disease. More information can be found on the [CTSI Pilot Program website](#).

2. I submitted a pilot application last year that was not funded? Can I resubmit to this RFA?
 a. Yes, you can resubmit an application from a previous year. It is expected that reviewer feedback from the previous submission should be included in the resubmission.

3. Are investigators/institutions from outside the Southeast Region of Advocate Health allowed?
 a. Investigators from institutions outside the Southeast Region of Advocate Health are allowed only if they are listed as key study personnel. They cannot be listed as PI or Co-PI.

4. Are international partners allowed?
 a. No, international partners are not permitted for pilot funding.

5. Do I need to submit this application with OSP?
 a. As this is internal funding, applications do not need to go through the Office of Sponsored Programs. Please apply directly to the link in the above in this RFA.

6. How do I note that I would like to be considered for the WFBMI supplement and/or the POIC supplement?
 a. Include the supplemental funding your budget and note in the budget justification what the supplemental funding will be used for.

7. If I include references in my LOI, does this count towards the 2-page limit?
 a. No, references for your LOI are not included in the 2-page limit.

8. Will I receive written feedback from the review of my LOI?
 a. Yes, after the LOIs are reviewed, all applicants will receive reviewer comments and feedback.

9. Will I receive written feedback from the review of my full application?
 a. Yes, after the full application review, all applicants will receive reviewer comments and feedback.