Targeting SIRPα as a therapeutic strategy for the treatment of breast cancer brain metastasis

Jessica Mackert, PhD; Elizabeth Stirling, PhD; Steven Bronson, DVM; Adam Wilson; Mitra Kooshki, MS; Dawen Zhao, MD/PhD; Pierre Triozzi, MD; Glenn Lesser, MD; David Soto-Pantoja, PhD

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer characterized by the lack of specific targets and an incidence of brain metastasis from the primary site of approximately 35%. There is no standard treatment for managing brain metastasis associated with TNBC; therefore, new strategies are urgently needed to overcome disease mortality. The CD47/SIRPα signaling pathway is implicated in tumor progression due to bypassing innate and adaptive immune surveillance. Most strategies targeting this pathway focus on targeting the receptor CD47; however, targeting SIRPα as a potential strategy to mitigate tumor burden remains understudied. Analysis of gene expression database shows that SIRPα expression is significantly elevated in invasive breast cancer compared to primary. Furthermore, single-cell data indicates that SIRPα is expressed in basal epithelial cells in TNBC tumors, aside from the myeloid compartment. Our immune staining against SIRPα in breast cancer patient biopsies shows a 3.5-fold increase in SIRPα expression in metastatic lesions compared to the primary tumor (n=19; \(p \leq 0.01 \)). To confirm that SIRPα is expressed on triple-negative cancer cells and whether it may be increased in brain metastatic cells, we stained 4T1 parental and brain-trophic 4T1-Br3 cells and found an 84% increase in SIRPα in the metastatic cells (n=3; \(p \leq 0.05 \)). Furthermore, Agilent xCELLigence Real-Time Cell Analysis revealed that SIRPα blockade inhibits brain-trophic 4T1br3 cell migration (n=4; \(p \leq 0.01 \)). Therefore, targeting SIRPα may be a new immunotherapeutic strategy to treat TNBC brain metastasis. Anti-SIRPα treatment of mice bearing brain-trophic 4T1br3 orthotopic tumors showed reduced tumor volume and tumor weight by over 50% compared to isotype control-treated mice (n=6; \(p \leq 0.05 \)). Furthermore, in a model of intracardial brain metastasis, treatment with SIRPα antibody was associated with a 40% increase in survival on day 15 compared to isotype control-treated mice. SIRPα blockade also reduced metastatic brain lesion formation by approximately 90%, determined by IVIS imaging (n=4-7; \(p \leq 0.05 \)). Nanostring GeoMX digital spatial profiling of the brain lesions revealed the immune checkpoints cluster of differentiation 152 (CTLA4), programmed cell death protein 1 (PD-1), programmed death ligand-1 (PD-L1), and cluster of differentiation 276 (CD276 or B7-H3) were significantly reduced in SIRPα treated brain lesions (n=3-6; \(p \leq 0.05 \)). Additionally, the extracellular matrix protein fibronectin, which contributes to invasion, metastasis, and immune evasion, was reduced by 70% in SIRPα treated brain lesions (n=3-6; \(p \leq 0.05 \)). These data suggest that SIRPα blockade may influence tumor and innate immune cells to limit brain metastatic breast cancer growth and enhance survival.

Supported by NCI R21 CA249349 (DSP), ASTRO-BCRF, and American Cancer Society Research Scholar Grant (133727-RSG-19-150-01-LIB)