

Wake Forest Alzheimer's Disease Core Center

Neuropathology Core

WF ADCC Neuropathology Core

Leader: T. Montine, MD, PhD
Co-Leaders: C.D. Keene, MD, PhD, R. Mott, MD

Neuropathology Service

C.D. Keene MD, PhD R. Mott, MD, PhD T. Montine, MD, PhD

Autopsy:

P. Lantz, MD K. Stogner-Underwood, MD

Virtual Microscopy:

S. Qasem, MD

Biospecimen Service

T. Register, PhD A. Molina, PhD D. Diz, PhD J. Parks, PhD C. Furdui, PhD C. Milligan, PhD

Pre-Clinical Service

NHP:

C. Shively, PhD
T. Register, PhD
M. Jorgensen, PhD
M. Cline, DMV, PhD
J. Kaplan, PhD
K. Kavanagh, VMS, MS, MPH
R. Hampson, PhD

Rodent:

T. Ma, MD, PhD D. McClain, MD, PhD

Imaging:

A. Mintz, MD, PhD C. Whitlow, MD, PhD J. Maldjian, MD Y. Jung, PhD

Genotyping & Molecular Genetics Service

D. Bowden, PhD G. Hawkins, PhD

 Aim 1: Develop and manage a repository of brain tissue, CSF, DNA, and blood from Clinical and MESA Core participants of the Wake Forest ADC using state-of-the-art methods;

- ~84 brains will be collected from the MESA and Clinical Cores
- ~1000 ante-mortem collections of plasma, DNA, and CSF over next 2 years will add to the existing repository from over 1100 well characterized participants

 Aim 2: Distribute data and/or tissue to Wake ADCC and ADC network investigators, NCRAD, and AD researchers world-wide

Resources Available:

Wake Forest ADCC (under development)

http://www.wakehealth.edu/Alzheimers/

University of Washington ADRC (under development)

http://depts.washington.edu/adrcweb/

National Alzheimer's Disease Coordinating Center

https://www.alz.washington.edu/

Other National Resources:

NCRAD: National Cell Repository for Alzheimer's Disease

https://ncrad.iu.edu/accessing_data.html

ADGC: Alzheimer's Disease Genetics Consortium

http://alois.med.upenn.edu/adgc/index.html

Aim 3: Conduct rigorous neuropathological diagnostic evaluations and clinical-pathological investigations of decedent Clinical and MESA Core participants

- Neuropathologic evaluations performed according to NIA-AA guidelines, on 20+ regions using histochemical and/or immunohistochemical stains
- Diagnostic evaluations following consensus guidelines for AD, microvascular brain injury, Lewy body disease, frontotemporal lobar degeneration, hippocampal sclerosis.

Aim 4: Facilitate measurement of key biomarkers of AD pathology & innovative markers of metabolic/ vascular function

- All participants: Plasma glucose, insulin, hemoglobin A1C
- MESA participants: Epigenetic/ transcriptomic measures of oxidative phosphorylation and metabolic pathways available for all MESA participants.
- Clinical Core participants: Monocytes & PBMCs
- Clinical and Mesa Core Subsets: panels of specialized assays: mitochondrial function, CSF inflammatory/vascular markers, targeted epigenetic & transcriptomic panels
- All available to WF investigators
- Molecular Genetics/Genomics support provided by the WF Genomics Core

Table 2. Example Assays Available to ADCC

AD / Synaptic Biomarkers

Aβ40, Aβ42, APP, sAPP, Tau, P-Tau, Neurogranin

Metabolic

Glucose, HbA1c, Insulin, C-peptide, GLP-1, Leptin, Resistin, Cortisol, Adiponectin, Apelin, GH, Thyroid Hormone, Neprilysin

Vascular

ICAM-1, VCAM-1, ET-1, E-selectin, P-selectin, L-selectin, E-cadherin, ICAM-3, MCP-1, MMP-9, Angiotensinogen, Angiotensin II, Angiotensin (1-7), Aldosterone, Plasma Renin Activity, Total Renin, ACE 1 & 2

Inflammatory / Immune / Oxidative Stress

CRP, IL-1β, IL-6, IL-1RA, IL-1R, TGF-β1, TNF-α, Heat Shock Proteins (Hsp70), F2-Isoprostanes (8-Isoprostane)

Lipid/Lipoprotein

LDL, HDL, TG, Total Chol, VLDL, Apo-AI - AII, -B, -E, Lp(a), fatty acid and cholesterol quantification, ABCA1

Mitochondrial

Mitochondrial mass quantification, ETC Complex Activity (ATP Synthase, NADH Dehydrogenase), Citrate Synthase Activity, PGC-1 α expression

Omics

Proteomics, Lipidomics, Metabolomics (discovery/targeted)

Other Measures

Estradiol, Estrone, SHBG, Testosterone, Progesterone

Aim 5: To establish preclinical models of AD and pathological brain aging in NHPs using procedures analogous to human protocols thus:

- creating a repository of brain tissue, CSF, DNA, biospecimens, and neuroimaging data; and
- providing NHP cohorts and rodent models that can be used for pivotal mechanistic and therapeutic studies.

NHP Neuropathology

A: Aβ in older NHP brain

B: Aβ in vascular wall

C: Neurofibrillary tangles

D: Dystrophic neurites

F: Hyperphosphorylated tau

- Please consider contributing NHP brain, CSF, blood, images to repository
- Core will help collect and store tissue for the parent project
- Expert characterization of AD pathology will be available to donor PI
- Future collaborative projects honor intellectual property of donor PI
- Many studies with archived data and tissue available (selection below)

Data and Tissues	PI/Contact	N, Years Follow-up	Manipulation & Species	MRI	Blood	CSF	Brain
Vervet Research Colony Biomedical Resource	Jorgensen	150, 6	Age Female/Male Vervet	х	х	х	х
Depression & Coronary Artery Atherosclerosis in Cynomolgus Monkeys	Shively	44, 5	Depression, tx Female Cynomolgus	х	х	х	х
Atherosclerosis, Estrogen Receptors, and Vascular Responses to Estrogens	Register	24, 5	Hormone tx Female Cynomolgus		х	х	х
Age, Body Composition, Functional Status, & Immune Function	Shively Register Jorgensen	16, 2	Immune & Physical Function Female Vervet	х	х	х	х
Bazedoxifene Acetate and Estrogens Effects on Atherosclerosis	Clarkson Appt	100, 2	Hormone tx Female Cynomolgus		х	х	х
Genetic Studies of CSF Biomarkers of AD	Coppola Jorgenson	315	Age, genetics Female Vervet	х		х	х
Radiation Countermeasures Center of Research Excellence Radiation Survivor Core (NIAID)	Cline	100, 1-11	Prior radiation, Rhesus	х	х		х
RADCCORE- Prospective Studies Core D (NIAID)	Cline	20/year	Radiation, mitigators Rhesus		х		х
Modulation of Radiation-induced Brain Injury in the Nonhuman Primate (NCI)	Deadwyler Cline	26	Radiation, mitigators Rhesus	х	х		х

Neuropathology Core Contacts

Main ADCC Contact: Nora Shively nshively@wakehealth.edu 336-713-4037

NP Contacts:

NHP Service Leader: Carol Shively

cshively@wakehealth.edu

Biomarker Service Leader: Tom Register

register@wakehealth.edu

Neuroimaging Service Leader: Akiva Mintz

amintz@wakehealth.edu